skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Wencai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Accurate identification of microRNA (miRNA) targets at base-pair resolution has been an open problem for over a decade. The recent discovery of miRNA isoforms (isomiRs) adds more complexity to this problem. Despite the existence of many methods, none considers isomiRs, and their performance is still suboptimal. We hypothesize that by taking the isomiR–mRNA interactions into account and applying a deep learning model to study miRNA–mRNA interaction features, we may improve the accuracy of miRNA target predictions. We developed a deep learning tool called DMISO to capture the intricate features of miRNA/isomiR–mRNA interactions. Based on tenfold cross-validation, DMISO showed high precision (95%) and recall (90%). Evaluated on three independent datasets, DMISO had superior performance to five tools, including three popular conventional tools and two recently developed deep learning-based tools. By applying two popular feature interpretation strategies, we demonstrated the importance of the miRNA regions other than their seeds and the potential contribution of the RNA-binding motifs within miRNAs/isomiRs and mRNAs to the miRNA/isomiR–mRNA interactions.

     
    more » « less
  2. null (Ed.)
    Deregulation of gene expression is associated with the pathogenesis of numerous human diseases including cancer. Current data analyses on gene expression are mostly focused on differential gene/transcript expression in big data-driven studies. However, a poor connection to the proteome changes is a widespread problem in current data analyses. This is partly due to the complexity of gene regulatory pathways at the post-transcriptional level. In this study, we overcome these limitations and introduce a graph-based learning model, PTNet, which simulates the microRNAs (miRNAs) that regulate gene expression post-transcriptionally in silico. Our model does not require large-scale proteomics studies to measure the protein expression and can successfully predict the protein levels by considering the miRNA–mRNA interaction network, the mRNA expression, and the miRNA expression. Large-scale experiments on simulations and real cancer high-throughput datasets using PTNet validated that (i) the miRNA-mediated interaction network affects the abundance of corresponding proteins and (ii) the predicted protein expression has a higher correlation with the proteomics data (ground-truth) than the mRNA expression data. The classification performance also shows that the predicted protein expression has an improved prediction power on cancer outcomes compared to the prediction done by the mRNA expression data only or considering both mRNA and miRNA. Availability: PTNet toolbox is available at http://github.com/CompbioLabUCF/PTNet 
    more » « less